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Examples of steady vortex rings of 
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The existence theory for steady vortex rings of small cross-section is used to 
derive asymptotic formulae that describe the shape and overall properties of 
such rings. A certain two-parameter family of rings is studied in detail, to a 
first approximation; for members of this family, the ratio wlr (of vorticity to 
cylindrical radius) falls from a positive maximum at a central point of the core 
cross-section to a value at  the core boundary that can be substantially smaller 
or even negative. The case of uniform wlr is considered to a higher order of 
approximation, and the formulae given for this case appear to be useful for 
quite substantial cross-sections. 

1. Introduction 
The existence of steady vortex rings in an inviscid fluid of uniform density has 

been proved, for the case of small cross-sections, by Maruhn (1957) and by the 
present writer (1970), who learned of Maruhn’s work only after his own had been 
published. Although Maruhn’s paper is only an outline - the reader being re- 
ferred for proofs and details to earlier work (Maruhn 1934) on a related problem 
in Newtonian gravitation theory- this outline makes it clear that, as far as the 
basis of the existence proof is concerned, the present writer merely recovered 
Maruhn’s ideas. However, the details of the two treatments differ and in Maruhn’s 
work are less complete and contain minor errors that are unimportant for ques- 
tions of existence, but of some importance for quantitative description of the 
vortex rings in question. In  what follows, we refer to the writer’s (1970) paper, 
henceforth denoted by 3. 

The bounded region to which the vorticity is confined will be called the core 
of the vortex ring. In the present paper we adapt the existence theory, in which 
the distribution over the core streamlines of wlr (the ratio of vorticity to cylindri- 
cal radius) is more or less arbitrary, to derive explicit, although approximate, 
descriptions of certain steady vortex rings characterized by particular vorticity 
distributions and by small cross-sections. To make this account largely self- 
contained, we give in $ 2  a shortened version of the formulation adopted in 3. 
From this we proceed to show in $ 3  how expansions in powers and logarithms of 
the small cross-section parameter may be computed; this scheme of successive 
approximations differs from that used in the existence proof although the two 
have something in common. Section 4 consists of a list of formulae giving, for 
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the general case, first approximations to the propagation velocity, kinetic energy, 
etc., in terms of the arbitrary function defining the vorticity distribution. 

A particular family of vorticity functions is introduced in 5 5; it is such that 
w/r decreases from a positive maximum at a central point in the core cross-section 
to a value at  the core boundary that may be positive, zero or negative. The effects 
on overall properties like propagation velocity of varying this vorticity distribu- 
tion are displayed, and are found to be numerically small for fixed circulation 
and fixed cross-sectional area as long as the vorticity remains one-signed. 

In $ 6  we consider rings for which w/r is constant throughout the core. This 
simplest of all admissible vorticity distributions has been a favourite for over 
a century: it characterizes the rings of small cross-section considered by Helm- 
holtz, Kelvin and Hicks (see Lamb 1932, § 163) when that early work is inter- 
preted correctly; it is the vorticity distribution of Hill’s spherical vortex, which 
is the only steady ‘ring’ represented by an exact solution in closed form; it 
satisfies the vorticity equation of a viscous fluid (although the corresponding 
interface condition is violated by our examples); and it is the vorticity of the 
Prandtl-Batchelor theorem about the inviscid limit of flows with closed stream - 
lines. For our purposes, the most relevant treatment of this case is that of Dyson 
(1893); I am indebted to Prof. P. G. Saffman for calling my attention to this 
remarkable paper, which Lamb mentions only in the context of stability and 
oscillations. Dyson considered a variety of problems related to the gravitational 
potential of a torus, and, assuming the existence of solutions in all cases, pro- 
ceeded to calculate approximations of a high order (for small cross-sections) by 
expanding certain operators in a manner that is as impressive as it is bewildering 
to modern eyes. In  the present paper we recover and enlarge upon Dyson’s results 
for steady vortex rings by applying our general theory, against the background 
of an existence proof, to the particular case of uniform w/r. More precisely, we 
compute the shape of the cross-section to one order less than Dyson, and the 
propagation velocity to the same order as he did; a t  the same time, our formulae 
describe explicitly the flow in the core; and, finally, we make a comparison with 
Hill’s spherical vortex which suggests that these results are useful for quite sub- 
stantial cross-sections. In  fact, Dyson’s formula for the propagation velocity, 
normalized a little differently in $ 6, is seen to be in error by less than 6 % for 
Hill’s spherical vortex even though a supposedly small cross-section parameter 
is equal to 4 2  in that case. 

2. Formulation of the problem 
Consider the flow of an inviscid fluid of uniform density occupying all space, 

and assume symmetry about the axis Oz of cylindrical polar co-ordinates ( r ,  8 , ~ ) .  
This co-ordinate frame is to be fixed with respect to a steady vortex ring repre- 
sented in a meridional plane (0 = constant) by a cross-section d with boundary 
ik2 and area Id/, as shown in figure 1, and by a stream function $(r, 2). d is an 
open set with closure 2 = & + a d .  Thus, writing vectors in terms of their 
components with respect to ( r ,  0, z ) ,  we seek a steady velocity field 

v(r, 4 = ( - $Jr, 0, Ilr,/r) 
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generated by vorticity curl v = (0, w, 0) in d and by auniformstreamwithvelocity 
( O , O ,  - w ) .  This latter corresponds to the propagation velocity ( O , O , w )  of the 
ring when it moves through fluid at  rest at infinity. We write w/r  = F($)  in 
accordance with the vorticity equation, and, regarding F($) and [dl as pre- 
scribed, seek @, a d  and w such that 

s=s+q, T=t - 

FIGURE 1. Notation. The cross-section d of a steady vortex ring is the image under the 
mapping (2.6) of the cross-section 9 of a vortex cylinder, 

where $ = $(P,2) ,  $ is to be constant on &Z7 and 

The kernel d is the stream function at (r,  z )  of a singular vortex circle about the 
axis of symmetry, through the point (P ,2) ,  and carrying a circulation 2nP. 
Equation (2.1) can be regarded, for points ( r , z )  on 2, as a nonlinear integral 
equation for y?, a d  and w : once this equation is solved for points on 2 the equa- 
tion defines $ elsewhere. 

The charucteristic rudius 1 of the vortex ring is defined by writing r = 1, z = 0 
for the position of the stagnation point (v = 0) in&; the cross-section parameter E 
is a small positive number appearing in the prescription (2 .5)  of F(@) below, and 
will turn out to be such that 

on 8 d :  (r-Z)2+z2 N e212 as E -+ 0. 

We introduce non-dimensional co-ordinates (X, Y )  and (8, T) by writing 

r/Z-1 = E X  = ESCOST, z / l =  EY = sSsinT, 
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and, letting S denote the co-ordinate pair (S, T ) ,  define 

IS - 8 I = {S2 + B2 - 2SB cos (T - ?)I*. 
Now the kernel Q(r,P,z--e) = 12G(S, g ,~ ) ,  say, may be approximated by the 

plane-flow stream function of a straight vortex line (normal to our meridional 
plane and through its point (P ,2) ) :  

G(S, g , e )  = (ln(s/6jS--1)-2>(1+0(E~+Ea)>. (2.3) 

This suggests that we consider an analogous plane-flow problem. Let ( x ,  y )  be 
Cartesian, and (s, t )  polar co-ordinates in the plane; x = s cos t and y = ssint. 
Let there be vorticity Q(s) on the unit disk 9: s < 1, - - 7 ~  < t < 7r. Then the 
plane-flow stream function of the vortex cylinder with cross-section 9 has t h e  
following alternative forms: 

(2.4a) 

(2.4b) 

the definitions of s and I S  - 81 being similar to those of S and I S - ,!$I. We write 
V G Y’(s) for the velocity, demand that-/- V < - cs on 3 for some constant c > 0,  
and normalize f2 to have a mean value of 1: 

- V(1) = f2(s)sds  = 4. ( 2 . 4 ~ )  

Apart from these conditions, and certain smoothness restrictions stated in 3 
and amply satisfied in the examples below, Q(s) is an arbitrary function. We 
specify f2 = 0 for s > 1, but Q(1) need not be zero. 

Returning to the axisymmetric problem, we now make equation (2.1) tractable 
by the following two steps. 

(i) The vorticity function u l r  = F($)  is  prescribed parametrically by 

so’ 

where U is a reference velocity specifying the intensity of the vorticity, Q and 
Y are as in (2.4), s is the variable (or ‘parameter’) of the parametric representa- 
tion, and the ‘constant ’ B(E),  which is not prescribed but will have to be found, 
is the value of $/U12 at the image in the rz plane of the point s = 0. This image 
will turn out to be the stagnation point (1,0), so that B(e) measures the flux of 
fluid between the x axis, on which $ = 0 by (2.1), and the stagnation circle 
r = I, z = 0 ;  it will be called thefEux constant. 

(ii) W e  seek a mapping 
S = s+q(s,t,E), T = t ,  (2.6) 

of the (closed) cross-section 3 of the vortex cylinder onto the (closed) cross-section2 
of a steady vortex ring; the function q i s  to be such that the integral equation (2.1) 
i s  satisjied o n g .  I n  order that the corresponding mapping between (X, Y )  and 

f This condition prevents difficulties with the solution of equation (3.8). 
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(x, y )  be one-to-one, we demand that q be O(s) for s + 0;  also Vq = (qz, qy) is to be 
uniformly bounded for 0 < s < 1. (However, Vq turns out to be many-valued a t  
x = y = 0,  depending on the value o f t  as s + 0 along a radial line.) 

The stagnation point s = 0 in the xy  plane is thus mapped onto the stagnation 
point S = 0 ( r  = 1, z = 0 )  in the rx plane, and the streamlines in 2 are described by 

X = so+q(s0, T, E ) ,  (s = constant = so), 
with so = 1 on 8x2. 

function q(s, t ,  E )  and the constants Tie), Bfe): 
Substitution of (2.5) and (2.6) into (2.1) yields the following equation for the 

Y(S)+B = -~W{1+e(s+q)cost}~+- G ( s  + 498 +a, 4 

where W =, Flu,  s + q denotes the pair (s + q(s, t), t),  and the convention 
Q = q(8 ,$) ,  !2 = a($), etc. is adopted throughout the paper. 

3. The expansion scheme 
It is proved in 3 that (2.7) has st solution {a, W ,  B} with the desired properties 

for sufficiently small values of E ;  here we wish to compute approximations to 
that solution and to the properties of the vortex ring. To this end, we substitute 
into (2.7) the following expansion of G (Lamb 1932, § 161; Fraenkel 1969, $ 3 ) :  

W 

G(S, &,.+ = In ~ 8 A (I+ZE”?),(S,&) ( 3 . 1 ~ )  
€IS-S] 1 

where the pn and P, are homogeneous polynomials of degree n in X ,  d and Y - P, 
and are even functions of Y - P. In particular, 

p1 = g(x + 3 2 ) ,  PI = - i ( X  + 5 2 ) ,  \ 
p z  = &{(X + 3 2 ) z  + 3( Y - P)z}, Pz = .?;x{3X2 - 6 x 8  - 

- ( Y - P ) 2 } ,  

5 8 2  I ( 3 . l b )  

J p 3  = - & { ( X - d ) 3 + 3 ( X - d )  P3 = & { - X 3 + 6 X 2 ~ + 3 X d 2 + 8 d 3  

x ( Y  - P)2}, + ( 6 X  + 32) ( Y  - P)”. 
The two series in (3.1 a )  converge uniformly and absolutely if 

€(a+@ < 2-01, SIX1 < 1-01, Eldl Q 1--a ( 3 . 1 ~ )  

for some (arbitrarily small) a > 0. 
We now split the integrand in (2.7) into three parts: the first corresponds to 

q F 0, the second is linear in q and contains no factor e, and the third consists 
of the terms of higher order in q and e. Thus, with the notation 

r = r(s, 8) = -In Is- & I ,  pn = p,(s,  8), P, = P,(s, 8), 
J Al - 41s + (28, jZ = 44e/& 
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(where 1 + J1+ J, is the Jacobian a ( X ,  Y)/a(x,  y) of the transformation (2.6)) we 

( 3 . 2 ~ )  
write 

G(s  + q, 9 +$, 8 )  (1 +@/A) (1 + $8) = G(s,  B, E )  +HI +H,, 

where Hl = rsq+ rsn@+{r +ln ( 8 / 4  - a} (@/5+$.& (3.2b) 

and H2 = +{rsSq2+2rs;q@+ rg3p2)+{rsq+ r,g}{Epl+jl)+{r+in ( ~ / E ) J  

x {v1(q, $1 + JlPl+ j 2 >  + {el(q,  $1 + .j,G - 21,) 

+ O(q3, q2elne, etc.). ( 3 . 2 ~ )  

(The formal expansion of In 1s + q - B - $ 1  in powers of q and @ is legitimate be- 
cause although rss, for example, has a non-integrable singularity at 5 = s, the 
sum F,q2+2rS&+ r,Q2 is strictly bounded: see (7.12) and (7.13) of 3. In  fact, 
this expansion of the logarithm converges uniformly if supIVql < 2-4 and if 
terms of the same degree in q and @ are always kept together.) 

The three terms on the right of (3.2a) are now multiplied by 0 / 2 n  and in- 
tegrated over 3. Referring to (2.4b), we h d  that 

A 

where 

and 

( 3 . 3 ~ )  

(3.3b) 

Here the basic stream function Y and the known constant Co form the dominant 
part; the known function g is O ( E ~ E ) .  

For the integral of Hl we note, again from (2.4b), that rSq contributes 
Y'q = Vq;  we integrate the term re$ by parts, obtaining a cancellation with the 
third term of Hl. Then 

&j/BHlc25d5d i  = Vq-Lq+C,(q),  (3.4a) 
A 

and (3.4c) 

The linear integral operator L is basic in all that follows; the constant Cl is 
relatively unimportant. (The use of bold type for both operators and vectors 
should cause no confusion.) 

Finally, we define a nonlinear integral operator M by 

1 
M(q, E )  = H2 65 d5 dt"; 

then (2.7) becomes 

(3.5) 
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Knowing from ( 3 . 3 ~ )  that 
m 

g(s, 4 = z E1Zg,(S, In49 
1 

we now introduce the similar expansions 

m m m 

1 0 0 
q(S,E) = CEnqn(S,hE), W = ZenWn(lns), B = CEnB,(lns), 

where g,, . . . , B, are polynomials in In E ;  correspondingly, 

M(q,  €1 = e2M2(q1, In E )  + E3M3(q,, q2, Ins) + . . . . 

125 

To save writing, we use the result (proved in appendix B of 3)  that the qn are odd 
or even functions of x ( = s cos t )  according as n is odd or even, and that 

K m + ,  = B2m+1= 0. 

It follows from ( 3 . 4 ~ )  that C1(q2m+1) = 0. Then expansion of (3 .6)  up to €3 yields 
the following equations: 

( 3 . 7 4  

v q ,  - Lq, = g1+ wos cost,  (3 .7b)  

Vq, - Lq, = (9, + W,(q, cost + Bs2 cos2 t )  - M,(ql,  Ins)) + B, + $K - C1(q2), ( 3 . 7 ~ )  

Vq3 - Lq3 = {g3 + W0(q2 cost + sql cos2 t )  - M,(q,, q,, Ins)] + W, s cos t .  ( 3 . 7 4  

It is useful to note certain general features of the equations (3 .7b ,  c,d)  before 

B, + *Wo = Go, 

proceeding to particular examples. They are all of the form 

vqn - Lqn = f (s) + a + Px, (3 .8 )  

where f is a known function; we wish to find qn and either the constant a (n even, 
/3 = 0 )  or the constant p (n odd, a = 0). The label ( ), is omitted from f ,  a and /3 
for ease of writing. We can eliminate a and P from (3 .8)  by operating on the 
equation with (0)) defined for any smooth function $(s) by 

d(s) = $(s) - $ ( O )  - { X $ z ( O )  + Y$JO)}. (3 .9)  

(Actually, only even functions of y appear in (3 .7 ) ,  so that &(O) = 0 there. 
On the other hand, with q, many-valued at  s = 0, it is not obvious that f , ( O )  is 
a uniquely defined number for the functions f in (3 .7 ) ;  but this is proved in 
appendix B of 3. What happens is that in ( 3 . 7 4 ,  for example, the terms of 
(Woq,cost), that are many-valued at  s = 0 are precisely cancelled by those of 
{M3(q,,q,,ln~)),.) Since Vq, is to be O(s2) for s + 0,  application of ( O )  to (3.8) 

( 3 . 1 0 ~ )  
yields 

where f, is the operator L with the kernel 

Vqn - = f, 
= - In Is - 9 I replaced by 

?(s, 6) = r(s, 9) - r(o, 8 )  -{xr=(o, 8) + yrzl(o, s)]. (3.10 b )  

The linear integral equation ( 3 . 1 0 ~ )  can be solved more or less explicitly, as 
is shown in appendix A of 3 and, for particular cases, in what follows. Then, with 
q, known, (3 .8)  determines a and p. 
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Alternatively, /3 can be determined directly from (3.8), without computation 
of qn,, by the following method, which is useful because in the case of (3.7b) it 
gives a formula for the leading term W, of the propagation speed. Using the 
definition (3.4b) of L and the Fourier series 

we find that L cost = V(s)  cost; (3.12) 

in other words, the homogeneous form of (3.8) has the non-trivial solution cost. 
(If y is a small constant, the corresponding mapping S = s + y cost, T = t repre- 
sents a pure translation of the circular streamlines s = constant, to the first order 
in y/s.) Let us now recall that i2 = 0 for s > 1, and write (3.4b) in Stieltjes- 
integral notation: 

@s^ d i i  at". Lq = I / / ln -  271. IS-61 
1 

We define a corresponding symbolic product for any two functions p ( s ) ,  q(s) 
sufficiently smooth on 9: 

Using (3.12), (3.13) and (3.8) successively, we obtain 

0 = [q,, Vcost-Lcost] = [Vqn-Lq7,,cost] = [f+a+px,Cost]. 

Now [a, cost] = 0 by the anti-symmetry of cost, and integration by parts shows 
that [x, cos t ]  = - 4 under our normalization ( 2 . 4 ~ ) .  Hence 

p = 2[f, cost] .  (3.14) 

Since (3.8) implies (3.14) we can now compute W, from (3.7b), once g, has been 
evaluated. Prom the definition ( 3 . 3 ~ )  of g, and the identity (sV)' = -sQ, we have 

(3.15) 

upon using the series (3.11) for the logarithm, integration by parts and the 
normalization condition. Then by (3.14) we deduce from (3.7b) that 

g,(s,lne)costsdQdt 

= -(ln 1 (8/s) - & + 4IO1 V z ( s )  s d s ]  , 
4 (3.16) 

and, since W, = 0, we have W = W,{1+0(s21n~s)). 
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The result (3.16)) which also appears in 3, has been found independently by 
Saffman (1970), using heuristic arguments and an energy method that is an 
extension of Lamb's (1932). It is not clear from this method that the error is 
two orders higher. Saffman goes on to consider vortex rings in a viscous fluid. 
Maruhn (1957) obtained only the term $ln(8/e) and underestimated the corre- 
sponding error. 

4. First approximations to the overall properties of steady vortex rings 
In this section we list the properties of principal interest for steady vortex 

rings, first writing exact definitions (or equivalent expressions given by Lamb 
1932, $ 162) and then approximate values implied by the present theory. The 
kinetic energy 5!" is that of the entire fluid when it is at  rest at  infinity and the 
ring moves through it; the stream function is then $+ iWr2 ,  where @ retains 
the meaning given to it in $2.  The calculations are straightforward and are 
indicated at  the end of the section. 

The results are expressed in terms of the characteristic radius 6 ,  the cross- 
section parameter B,  the reference velocity U ,  the non-dimensional velocity 
V = ' r ' (s)  in the vortex cylinder (all defined in 5 2) and the densityp of the fluid. 
The error factor in all cases is 1 + 0(S2), where 

6 = cln(8/e-), 

because the first-order displacement E q l  of the streamlines is an odd function of x 
and because the corresponding perturbations cWl and eB1, of the propagation 
velocity and flux constant, are zero. 

Cross-sectional area: 

= 11 dr dz = ne2~2{1+ o(P)). 
d 

n n  

Circulation: 

Propagation speed: 

Flux: 

$ ( l , O )  = UPB = U12 #ln(8/e)-E-Y(1)-4 

Kinetic energy: 
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These results are found as follows. The expression for w is essentially (3.16). 
For the kinetic energy we have 

P = /s~(Y(s)+B+awrl+.(.+n,cos~12, 

x !2(s) (1 + €(S + q)  cost} (1 + q/s )  (1 + a,) s ds dt, 

where q N E q , .  Hence all terms proportional to 6 or E in the integrand are odd 
functions of x and make no contribution; also B, = W, = 0. It is proved in 
appendix B of 3 that the e2 terms have at  most a factor (In ( S / E ) } ~ .  Therefore 

where B,+&W, = C, = Qln(8/e)- l -Y(1)  by ( 3 . 7 ~ )  and (3.3b), 

1; Qsds = 4 by (2.4c), 

This gives (4.6), and the remaining results are found similarly. 

5. The vorticity distribution w / r  = constant x J,(ks) 
Consider the vortex cylinder described by 

(5.1) 
i2 = CkJ,(ks), c = {2J1(k)}-1, 

V = -CJ,(ks), Y = ( C / k ) { J , ( k s ) - l } ,  

where J, is the Bessel function of the &st kind of order n, k: is a non-negative 
constant and the limiting values (6.1) are to be understood for k = 0. The func- 
tions i2 and V are shown in figure 2. Letj, % 2.40 andj, % 3.83 denote the first 
positive zeros of J, and J1 respectively ; then our theory is applicable for 0 < k < j,. 
However, it is probably of interest only for 0 < k <jo, since for k > j ,  the 
vorticity changes sign across some core streamline s = constant < 1. 

Corresponding to (5.1) there is a family of steady vortex rings characterized 
by the two parameters k and 6.  Their overall properties are given by (4.1) to 
(4.6), in which s: 
As we make the fairly extreme change from k = 0 to k = j o  (that is, from the 
case of uniform w/r  to a vorticity function w/r that has a maximum at the stagna- 
tion point r = 1, x = 0 and is zero on a d )  the function (5 .2 )  increases from +a to 4. 
For E = 0.2 and fixed U ,  1 this represents an increase of about 7% in propagation 
speed and 13 % in kinetic energy; for smaller 6 ,  the changes are less. Thus the 
effect on the overall properties of the ring of varying the vorticity distribution 
appears to be numerically rather small for fixed circulation and one-signed 
vorticity . 
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We now determine the function q,(s,lns), which gives the first correction to 
the basic pattern of concentric circular streamlines in d. Using (3.15) for g,, 
and then applying to (3.7b) the operator ( O )  defined by (3.9), we obtain 

Vq1-Lq1 = i1 = h(s) cost, (5.3) 

where h(s) = ( C p )  [2ks{l -J,(ks)}-#{ks-2J1(ks)}] .  (5.4) 

1 .o 

0 

FIGURE 2. Vorticity and velocity functions of the family of 
vortex cylinders considered in 5 5. 

We seek the (unique) solution of (5.3) in the form 

Upon insertion of the Fourier series of f(s,G) implied by (3.10b) and (3.11), 
equation (5.3) becomes 

Vq, = {h(s) + w(s)} cost. (5.5) 

;$(A " j i y  a'ŝ  a$ = 0, (Q'/ v = k2). 
w(s)-- --- - 

S B  

a 2  l a  1 
- as2 s as s2' 

A =-+---- Operating on this with 

(this operator is related to the two-dimensional Laplace operator A by 

we obtain the ordinary differential equation 

(A,+k2)w = -k2h(s) (0 6 s < 1). (5.6 a)  
&SO, w(0) = w'(0) = 0, (5.6 b )  

A{#(s) cost> = cost Al#), 

9 F L M  51 
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because Vq, is to be O(s2) for s -+ 0. Since the solutions J,(ks), Yl(ks) of the homo- 
geneous form of (5.6a) are known, the problem (5.6a, b)  is an elementary one; the 
solution is 

~ ( 9 )  = (C/lc2) [ 2 { k ~ - 2 J ~ ( k ~ ) - ~ k 2 ~ 2 J 1 ( k ~ ) } - $ { k ~ + k ~ J O ( k ~ ) - 4 4 J l ( k ~ ) } ] ,  (5.7) 

and the desired function q1 is now given by ( 5 4 ,  (5.4) and (5.7). 

FIGURE 3. The streamline pattern in the core, according to the approximation 

S = s+sp,(s, T), 

when w/r  = constant x J,(Bs). The dot marks the stagnation point S = s = 0, and the 
streamlines ares = &, +, t ,  1. The axes are oriented as in figure 1. The parameter E = 0.2, and 
k = 0, 2.40 for (a), (b)  respectively. 

The corresponding streamline pattern in the core is shown in figure 3 for k = 0, 
2.40 and E = 0.2. The value E = 0.2, which may be too large for neglect of higher 
order terms when k = 2.40, has been chosen to make the departure from con- 
centric circles easily visible. For k = 0, the distances lSrl between adjacent 
streamlines in figure 3 (a) indicate that the velocity 1.1 is still nearly constant 
(independent of the angle T )  on each streamline. For we know that in any axi- 
symmetric flow IvI rl8rl is constant along a streamline pair, to the first order in 
I8r(, and in figure 3(a) the values of rl8rl are nearly constant along each pair. 
For k = 2.40, however, the change in I8rl as we move around the core boundary 
is much more pronounced. For an explanation of this let us start with the pattern 
for k = 0 (a = 1) and gradually change the vorticity function 0 to that shown 
in figure 2 for k = 2.40. Then the vorticity becomes strong near the stagnation 
point and weak near the core boundary. On the streamline s = 1, say, the velo- 
city is now significantly greater at T = 0 than it is at T = n- because the former 
point is closer to the concentration of vorticity near the stagnation point. Thus 
the streamlines moves till closer together near s = 1, T = 0 and still further apart 
nears = 1, T = n-. 
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6. The case of uniform u / r  

compute up to €3. The relevant vortex cylinder is described by 
This case is of special interest, for reasons already mentioned in $ 1,  and we 

Q = 1, v =  -1s 2 ,  y = -182 4 -  (6.1) 

A simplifying feature is that in the definition (3.4b) of the integral operator L 
the integral over the disk 9 vanishes; the remaining boundary integral is easily 
evaluated in terms of the Fourier coefficients of q( 1, t ,  E ) .  This simplification 
corresponds to the fact that u/r  = constant is a trivial solution of the vorticity 
equation. 

Because of the known form of the forcing function g(s ,e)  defined by (3.3c), 
we make explicit the dependence on t of the qn introduced in $ 3, and write 

q(s, t ,  4 = EP1,1(4 COB t + E2{P2,0(4 + q2,2(s) cos 2t> 
f E 3 { q 3 , 1 ( S ) C O S t + q 3 , g ( S ) C O S 3 t } +  ..., (6.2) 

where the polynomial dependence of the qn,m on Ins is to be understood. Equa- 
tions (3.7a) and (3.7b) of $ 3 become, when the latter is divided by s cost, 

Bo+$Wo = $In(8/~)-$,  (6.3) 

(6.4) 

Setting s = 1 in (6.4) yields W,, setting s = 0 then yields ql,l(l), and the equation 
now determines ql,l(s). (Of course, (3.16) also gives W,.) The treatment of (3.7 c) 
and (3.7d) is similar, the two Fourier components of each equation being treated 
separately. Some computational details - and checks, for the arithmetic is 
formidable - are given in the appendix. We find that 

- $ql, l(s) + &Il, 1( 1) = - @n ( S / E )  + 1 - $sz} + W,. 

(6-5) i 
q1 = - $52 cost, 

q2 = %s3 +{[ -3  In (S IB)  +%I s + G s 3 }  cos 2t, 

q3 = {[# In (8/e) - g] s2 - &s4) cos t + { [& In ( 8 / 4  - :&I s2 - %is4) cos 3t. 

The overall properties of the vortex ring, defined in $4 and computed here by 
the same method as before, are 

= n ~ y i  +%G+ 0(84)}, (6.6) 

= u q i  +gs2+ 0(84)}, (6.7) 

= U{[aln(8/e)-&] +e2[&$ln(8 /s ) -~]+0(84)} ,  (6.8) 

(6.9) @(l,  0) = U12{ [# ln (8 /e ) -g ]  +ez[&ln(8 /e ) - a ]  +O(S4)}, 
P = p ~ 1 3 n y 1 -  +p + 0(84)}, (6.10) 

(6.11) 

There are certain advantages in rewriting these results in terms of parameters 
I ,  and E*,  defined to be such that r = I,, z = 0 is the mid point of the chord 
x = 0 of d, while E* is an exact measure of the cross-sectional area Id). Thus 
we define 

I* = 4{rls=l,t=O+rls=l, t=J ,  (6.12 a )  
E i  = ldl/nl2, (€* > 0); (6.12b) 

= p U213n2{[$ In ( 81~)  - 41 + E ~ [ %  In (8 /s )  - g] + O(S4)}. 

9-2 
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and, correspondingly, a new reference velocity U, is defined by 

w/r = U,/& 1:. (6.12 c) 

These new parameters are related more simply to the circulation K (as well as 
to the cross-sectional area ] & I ) ;  the equation of 8d is simplified; and e, is known 
for Hill’s spherical vortex, whereas e is not. From (6.5) and (6.6) we have 

t,/z = 1-9e2+0(~4) ,  = 1 + g p + 0 ( 6 4 ) ,  u,/u = 1 + 3 € 2 + 0 ( ~ 4 ) ,  (6.13) 

I I I 

0 0.5 1 .o 212 

€* 

FIGURE 4. Variation of the propagation speed @ with the parameter E* for wlr = constant. 
_- - -  , 4 t h  (8/e*)-$}; -, formula (6.16); +, exact result for Hill’s vortex. 

and so, with 6, = 6 ,  In (8/.5,), 

Id1 = n&:, (6.14) 

K = u,l*ic7T{1+ o(S$)}, (6.15) 

= U,{[a In (8/e+) -&I + e$[ - &In (8/e,) ++A] + O(S$)}, (6.16) 

P = pu,z3,n~{1+~€$+o(S$)},  (6.17) 

5! = p U$l;  n2{[+ In ( S / E * )  - Q] + &e: In ( 8 / 4  + O(S$)>. (6.18) 

The result (6.16) is plotted in figure 4 up to rather large values of e, because of 
its success for Hill’s spherical vortex. For this vortex d is a half disk of radius 
21,, so that e, = 42 by (6.14). The property ~ / r  = 15p/8Z$ of Hill’s vortex, and 
the definition ( 6 . 1 2 ~ )  of U,, then imply the exact value WlU, = 4/15 z 0.267, 
while (6.16) gives the approximate value 0.281. 

In  terms of co-ordinates (E,, T,) defined by 

r-1,  = e,l,E,cosT,, x = s,l,S,sinT,, 

the equation of a d  is 

S, = 1 - & [ ~ l n ( 8 / s , ) - ~ ]  cos2T,+e3,[&ln(8/e,)-#&] 

x (COS 3T, - cos T*) + O(Sg), (6.19) 
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and the position of the stagnation point in& is 

S* = (Z-Z*)/e*Z* = #e,+e$[-$?&In(~/e,)+&&&] + O ( S : ) , )  
(6.20) 

The dividing streamline $ = 0 is also of interest because it separates the fluid 
permanently near the core from fluid streaming past. This streamline and the 

T* = 0. 

FIGURE 5. The core boundary a d  and the dividing streamline 1+4 = 0 for o / r  = constant. 
The cross marks the mid chord point r = I*, z = 0, and the dot the stagnation point r = I, 
z = 0. The parameter e* = 032, 0.4 and 0.6 for (a), (b )  and (c) respectively. 
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core boundary ad are shown in figure 5 and again suggest that Hill’s vortex 
(for which the two curves coincide) is approached as E* increases, even though the 
validity of our theory is assured only for suaciently small values of e,  (the 
exact upper bound being unknown). It may be that the basic step of replacing the 
kernel G by its expansion up t o  €3 is a good approximation for quite substantial 
values of G ,  in view of the large domain of convergence of that series noted in 
(3.1 c ) ;  and our subsequent approximations have been merely consistent with 
that step. 

The dividing streamlines y? = 0 in figure 5 were computed by a combination 
of (a) the ‘inner’ expansion of the stream function used so far, and ( b )  the ‘outer’ 
expansion, which is that for E -+ 0 with ( r -  Z)2+z2 bounded away from zero. 
Both series are given in some detail by Fraenkel (1969)  for the related problem 
of the magnetic field induced by a ring current. 

There can be very little doubt that for uniform u/r  there exists a family of 
steady vortex rings characterized by the parameter e*, 0 < E* < .J2, with Hill’s 
vortex forming the largest member of the family. We know this assertion to be 
strictly true for some interval 0 < E+ < a;  and J. Norbury, until recently a re- 
search student at Cambridge, has proved it (Norbury 1972a)  for some interval 
p < IZ* < $2. Norbury’s vortex rings are topologically equivalent to a torus for 
IZ* < 4 2 ,  but tend to Hill’s spherical vortex as IZ* -f J2. Norbury (1972 b )  has also 
solved equation (2.1) numerically for intermediate values of E* (and for 
F(@) = constant). 

For other vorticity distributions, we again know that families of steady vortex 
rings exist ‘in the small’. It is not obvious what the largest member (if it exists) 
of such a family will be, but we may expect it to be an ovoid of some kind, that 
is, topologically equivalent to a sphere. 

Appendix. Some computational details 
T h e  expansion of G up to e3 

By virtue of its definition, the kernel G(S,  8 , ~ )  satisfies the differential equation 

for S =+ 8. The polynomials p ,  to P3 in (3 .1  b)  were tested by checking that (a) the 
corresponding expansion of G satisfies (A 1 )  with an error O(&ln~),  and (b )  the 
corresponding expansion of (1 + e$)-l G is invariant when X and 2 are inter- 
changed. 

The  forcing function g for SZ = 1 

With the notation h = In (8/e) and with Q = 1 ,  the expansion up to €3 of the 
function g defined by ( 3 . 3 ~ )  is given by the following: 

+L{( - - $S~}COS 2t,  

+ &{( h - y) 83 - &s5) cos 3t. 

-g,(s, A )  = ~{(h+1)s-~s3)COSt, 
-g2(s, A)  = ~ { ( g h - ~ ) + ( h + 1 ) 9 2 - - S 4 )  

- g,(s, A )  = A{ - 3 ( h  - 1 )  s+ ( - 3h f?) s3+ p} cost 
16 
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To interpret and to check this, we set U = 1 = 1 and note that according to 
( 3 . 3 ~ )  the function 

is the stream function due to vorticity u/r  = !2(h')/e2 in the torus S .c 1 of exactly 
circular cross-section, the cross-sectional radius being 8. Accordingly 

WfJ)+C,-g(S,4 = @O(S,d, say, (A 3) 

and this equation was used to check (A 2).  

The nonlinear terms M2(ql, A)  and M3(q1, q2, A)  for B = 1 

In  this case the integral in (2.7) can be written 

= @ O F ,  4 + @dS, d, say, 

where Q0 denotes the integral over 8 < 1, as in (A 3). This leads to a way of 
computing the nonlinear terms M, and M, in equations ( 3 . 7 ~ )  and ( 3 . 7 4  that is 
slightly more economical than the method given in 5 3. (Both methods were used 
for M2.) The function @,(S, e) is first calculated up to e3 in terms of the constants 
eql,l(l), s2q2,,(1) and e2q2,z(l), which are the Fourier coefficients of eql and e2q2 
on s = 1 (see (6.2)). To find the expansion up to e3 of the integral in (2.7), now 
to be written as a function of s, we substitute 

S = S + E : ~ , ( S , ~ ) + E ~ ~ ~ ( S , ~ ) ,  T = t  

into a0 + @I, expand up to e3, and add s3( Vq, - Lqa). 
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